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AbstracL We presenl an analysis of Ihe behaviour of a strongly disordered lead in a magnetic 
field connected to a less disordered sample. The disordered lead acts as an imperfect contact. 
coupled in varying degrees to different outgoing and incoming stales in the sample: in a magnetic 
field these states are the different edge states. For skong disorder what wouId be the inner edge 
state in the absence of disorder does not propagate through the disordered lead, and we discuss 
what happens in this case. We show how an activated occupation of the inner edge state results 
from the different energies at which the inner Landau level SMS to propagate for different 
disorders. We present numerical results for some particular disordered leads, quantifying Ihe 
difference in energies. 

1. Introduction 

In the preceding paper, we discussed, in the context of a model of weak scattering between 
edge states, how a disordered wire populates in different proportions the edge states in a 
clean wire to which it is connected, and how this explains the experimental results of Geim 
et al [l]. In  this paper we consider the regime of strong disorder. 

In the experiment of Ceim ef al [l] the sample was in essence a clean wire with the 
same parameters, except for the disorder, as the lead. We are particularly interested in the 
behaviour of the disordered lead in the regime where there is backscattering in the relatively 
clean wire, and we discuss below how this implies that the inner edge state of the clean 
wire is strongly backscattered by the disordered wire. 

We have performed calculations of the conductance of disordered leads numerically. At 
zero temperature the transition between quantum Hall states is shifted to higher energies 
in the disordered lead; for a Fermi energy below the transition this leads to an activated 
occupation of the outer edge state in the sample. Close to the cut-off of the conduction of 
the inner mode through the disordered lead, the temperature dependence of the longitudinal 
conductance in the disordered wire dominates, and gives an occupation of the inner edge 
state varying as exp(-a T-’’’). 

2. Activated behaviour 

Ceim et al [ I ]  have recently performed experiments on a Hall bar with disordered leads, as 
sketched in figure 1. They have observed the Shubnikov-de Haas oscillations arising from 
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Figure 1. The experiment of Feim el a1 111. A Hall 
bar is connected to disordered leads (shaded) which are 
connecled a1 one end to ideal reservoirs (black boxes), 
and at lhe nher end to the region we refer 10 35 the 
sample, which is enclosed in a dotted line. 

Figure 2. Strongbackscattering limit where eleamns 
have to travel though the bulk of the wire, for example 
from A to B, to move from the inner edge slate in 
the clem lead 10 the outer edge stale in the disordered 
section, The dotted line shows a possible path that the 
cunent between A and 8 might take, hopping between 
the loops of circulating current. 

the reson-nt backscattering of electrons in the central part of the bar [Z], and have found 
that these oscillations are suppressed at low temperatures. We understand the suppression to 
result from a non-equilibrium occupation of the edge states in the sample by the disordered 
leads. Specifically, at lower temperatures fewer electrons are injected from the disordered 
leads into the inner edge state in the sample. There are therefore fewer electrons to be 
backscattered, and so the oscillations are suppressed. Away from the maximum of the 
Shubnikov-.de Haas oscillations, a resistance proportional to exp(-a T-'/ ' )  was observed. 
Around the maximum, a resistance propr lional to exp(-a T- ' )  was found. 

To understand the activated behaviour, we think directly about the occupation of the 
outgoing outer edge state as a function of energy and disorder. Let us take some fixed 
magnetic field and disorder. As the energy is increased in a wire, successive edge states 
will become able to propagate through the wire essentially without backscattering: the higher 
the disorder, the higher the energy necessary. Close to the point where an edge state is 
being closed off in the clean wire, that mode cannot propagate far in the disordered lead. At 
higher energies that mode would propagate far into the Lead, so that at higher temperatures 
some fraction of electrons from the tail of the Fermi-Dim distribution can propagate into 
the lead. The number of electrons emerging from the disordered lead into the clean wire 
within the inner edge state is then expected to be proportional to exp(-(Eo - E F ) / T )  where 
EO is the energy where the outer edge state stam to propagate in the wire, and EF is the 
Fermi energy. (EO > EF.) We expect EO to vary as 

Eo = hw,(n + 4) + ED (1)  

where f iw,(nt  $) is the energy at which the corresponding Landau level starts to be occupied 
in the bulk, and ED is a magnetic-field-independent offset. We therefore predict an activation 
energy increasing linearly with the magnetic field, as at higher magnetic fields increasingly 
higher energies are needed for the edge stale to propagate in  the disordered region. 

Where the model of edge states propagating through the disordered region breaks down, 
a picture like figure 2 will be appropriate, where the inner edge state from the clean region 
is almost entirely reflected from the disordered sample, and exists only in localized rings in 
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the disordered region. Figure 2 can be compared with figure 1 in the preceding paper [3] 
where in the weak-disorder limit [3] the system can be described in terms of backscattering 
between the inner edge states travelling in opposite directions, and interedge scattering 
between the inner and outer edge states on the one side. In this strong-disorder limit, all 
population of the inner edge state occurs by transfer through the bulk, that is the area of 
the disordered lead apart from the propagating outer edge states, and there is no helpful 
distinction between backscattering and interedge state scattering. The probability of an 
electron being transferred from the inner edge state to one of the edge states propagating 
in the disordered region, or vice versa, is then, for weak conduction, proportional to the 
conductance of the bulk region 141. As the temperature increases, and so the conductance 
of the bulk region increases, the coupling to the inner edge state in the sample increases. If 
this bulk conductance is proportional to exp(orT-’/*), consistent with experiments on the 
quantum Hall effect [5,  61 and theory [7. 8, 91, then the coupling of the lead to the inner 
edge state in the sample is also proportional to exp(orT-”’). which is the experimental 
temperature dependence away from the maximum of the Shubnikov-de Haas oscillations. 

3. Numerical modelling of edge state distribution 

We have argued that an activated occupation of the inner edge state occurs near the transition 
between different numbers of propagating edge states. We have performed numerical 
calculations to put a scale to this activation energy. 

We have calculated the ballistic, that is without inelastic scattering, electron transport 
through a disordered lead for varying disorder, width and length. Standard recursive Green 
function methods [lo, 111 were used to calculate the conductance of the system from the two- 
terminal Landauer formula [12, 131. We used a simple estimate for the disorder, assuming 
linear, Thomas-Fermi screening in the 2DEG and uncorrelated ionized donors to calculate 
the potential. We neglected non-linear screening effects [14] since we are not interested in 
the region where there are few electrons in the lead, but rather the region where a higher 
mode is switching on. A full calculation would take into account the different screening, 
depending self-consistently on the occupation of the Landau levels in the wire. The use 
of uncorrelated ionized donors overestimates the disorder [15, 16, 171. A rough estimate 
of the effect of correlations on the disorder is given by assuming that the electrons left 
in the donor region screen the potential there in a Thomas-Fermi manner. This suggests 
that the disorder in a typical ZDffi, as measured by the standard deviation of the potential, 
should be of the order of ten times smaller than would he found with uncorrelated donors. 
For the calculations we use the potentia1 derived from randomly positioned ionized donors 
multiplied by a scaling factor. In Geim’s experiment, we estimate that since the mobility 
in the disordered region was of the order of 100 times lower than in the clean wires, the 
disorder was of order 10 times as large as in the clean wires. 

Since the correlations in the donors and the deliberately increased disorder in Geim’s 
wires approximately cancel each other, we have taken the scaling factor to be unity, and we 
have used in this paper the parameters used by Nixon and Davies [14]. Namely we assume 
a donor to ZDEG separation of 28 nm, and assume an equipotential backgate at 70 nm from 
the ZDEG. We assume 2 x 10l6 m-’ randomly positioned, ionized donors. 

Figure 3 shows representative results for the conductance of such a disordered lead 
in the region where an edge state is closing o f f  as the energy is lowered. The results 
show the shift of the transition to higher energies (or at fixed energy, lower magnetic field) 
when disorder is present. Calculations for different magnitudes of the disorder show a shift 
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Fieure 3. Conductance of 120 nm long disordered wires of different widths, W. for IO random 
instances of the disorder. The pmmeten of the disorder are described in the text. The dotted 
line shows where the inner edge state would disappear in a perfect wire. 

Figure 4. Reflected edge state in the energy range where the inner edge state would propagate in 
P clean wire. but does not propagate along the disordered wire. The figure shaws the disordered 
section of the wire, which is connected to e l m  wires at both ends. The double chevrons mark 
where the edge states are injected. The shading marks the local density of states. the darker 
areas indicate the higher density. 

essentially proportional to the disorder. Note the wide variation in the size of the shift, and 
in the width of the transition, from sample to sample. 

The results are consistent with the disordered lead behaving as if it had a barrier at 
some height. Figure 4 shows a representative current pattern from the regime where the 
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outer edge state is not propagating in the disordered region, but will still propagate in a 
clean lead. The inner edge state is reflected by the potential, in this case at the far end 
of the disordered region from where it was injected. We find that the shift in energy is 
generally proportional to the size. of the disorder, consistent with a semi-classical picture 
where edge states are following equipotentials and the barrier height is determined by the 
highest equipotential crossing the sample. 

The size. of the shift in the transition depends on the size of the sample. In an infinitely 
wide wire this would be the single, percolating, equipotential at the mean value of the 
potential. In a very thin sample the barrier height is given simply by the maximum of the 
potential. The shift in the energy where the mode starts to propagate therefore is typically 
smaller for wider wires. As the wire becomes longer the shift will typically increase as 
higher equipotentials are included. A more complete theory, which we do not attempt here, 
would consider the extra scattering between the edge states, and equilibration within the 
edge states at finite temperatures, which will set a limit to the effective length of the wire. 

4. Conclusions 

We have presented a discussion of edge states propagating in a strongly disordered lead. 
For energies where the inner edge state propagates in a clean wire, but only propagates for 
a short distance in the disordered leads, there is only a weak coupling between electrons in 
the inner edge state of the clean wire and the disordered lead. We discussed two aspects 
of how the electrons are coupled to the disordered lead: firstly, at higher energies the inner 
edge state propagates through the disordered lead, giving an activated contribution to the 
coupling; secondly, electrons can be transmitted via the bulk part of the disordered lead 
where circulating edge states are expected. In a semiclassical picture, the energy at which 
an edge state starts to propagate through the disordered wire increases linearly with the 
disorder, and with the magnetic field. This energy is seen to vary strongly from sample to 
sample. 

In this paper and the preceding paper [3] we have considered two models of a disordered 
wire connected as a lead to a relatively non-disordered sample, and discussed how they 
relate to the experiment of Geim et ai [I]. In the first paper we considered a model of weak 
scattering between edge states. Whilst this helps to understand the qualitative trends in the 
experimental results with disorder and geometry, the weak-scattering model was unable to 
explain plausibly the dependence on the temperature. In this paper we have considered 
what happens in the limit of strong scattering. We have argued qualitatively how the two 
observed behaviours as a function of temperature can be explained, and we have presented 
numerical results showing the effect of plausible parameters for the disorder. 
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